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ABSTRACT 

The repor t  describes a study of the ana lys i s  of bending v ibra t ion  
i n  f l e x i b l e  aerospace vehicles i n  terms of distributed-parameter 

o r  wave-transmission concepts, r a t h e r  than i n  terms of the normal- 
mode approach. A r e l a t ionsh ip  is  developed between the  v ibra t ion  

equation o f  motion and the  propagating-wave equation. 
models and matrixes a r e  developed f o r  uniform beam segments, in- 

cluding t h e  e f f e c t s  of  shear compliance and ro t a ry  i n e r t i a ;  axial 

loading; longi tudina l  displacement because of  a x i a l  loading; and 

distributed, uniform, lateral loading. Through use of a t ransfor -  

mation technique, t he  l o c a l  s t a t e  variables are r e l a t e d  t o  the 

c h a r a c t e r i s t i c  var iables  of the  beam permit t ing f ac to r i za t ion  of 

t h e  so lu t ion  i n t o  propagation and end-effect matrixes. The tech- 

nique is applied t o  a non-uniform beam approximated by a cascaded 

or  s t e p  beam s t r u c t u r e  combined w i t h  a damped spring-mass s loshing 

model. The advantages and disadvantages of the distributed-para- 

meter/transmission matrix approach are invest igated through a f e w  

examples and the  use of t h i s  approach for  the  dynamic ana lys i s  of 

aerospace vehicles  is evaluated. 

Transmission 
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2 
A Cross-section area of beam, i n .  
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1 

S 

2 
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D 

E 
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2 
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Section 1 

INTRODUCTION 

The t ransverse  v ibra t ion  analysis  of f lexible s t ruc tu res  has been t r e a t e d  

mainly through a lumped parameter approximation whereby the  continuum is re- 
placed by a f i n i t e  degree of freedom system composed of lumped elements. 

ana lys i s  method w a s  first applied by Lagrange (Reference 1) and Rayleigh 

(Reference 2)  i n  studying t h e  v ibra t ing  s t r ing .  

cont ro ls  analysis  of f lexible vehicles i n  tenns o f  t h e  na tu ra l  modes has been 

s tudied  by Bisplinghoff (Reference 3) and others  (References 4 and 5). 

T h i s  

More recent ly ,  dynamics and 

Transmission matrixes,  which have been applied only recent ly  t o  v ibra t ion  

analyses,  can y i e ld  e i t h e r  an exact o r  approximate approach f o r  describing 

continuous systems. 

n a l  e l e c t r i c a l  networks. Later ,  t h i s  w a s  applied t o  acous t i ca l ,  mechanical, 

and electromechanical v ibra t ion  problems (Reference 6) .  
v ibra t ions  through matrix methods f o r  various s t ruc tu res  has been notably 

accmplished by Pes t e l  and Leckie (Reference 71, Brown (Reference 8), and 

Pipes (Reference 9). 

The first use of matrixes w a s  f o r  descr ibing four termi- 

Treatment of bending 

Vaughan (Reference 10) t r e a t e d  bending vibrat ions through an analogy developed 

between propagatian and r e f l e c t i o n  in  t h e  Bernoulli-Euler and t h e  wave equa- 
t i ons .  

method. 

dynamic e f f ec t s  , ex te rna l  loadings,  s losh dynamics , and nonuniform s t ruc tures .  

Transmission matrixes and models are developed f o r  t h e  various cases. 

Though r e s t r i c t e d  t o  uniform, t h i n  beams, it provided a novel ana lys i s  

Essent ia l ly ,  t h i s  study applies t h i s  method t o  beams with secondary 

1.1 SCOPE OF WORK 

This r epor t  smmarizes t h e  work performed under t h e  National Aeronautics and 

Space Administration Contract NAS 8-20292, Application of Transmission Concepts 

t o  F lex ib l e  Launch Vehicle Dynamics. 

were : 

lhndamental object ives  o f  t h i s  study 

1. Extension of the transmission matrix concept t o  simple nonuniform 

s t ruc tu res  composed of  uniform t h i n  beam segments (Bernoulli-Euler 

beam). 

1 



2. Invest igat ion of methods of developing a transmission matrix f o r  

a beam with secondary dynamic e f f e c t s  included. 

3. Attempt t o  develop the  transmission matr ix  f o r  t h e  beam i n  I t e m  2 

when: 

A. 

B. 

Subjected t o  an axial load. 

Subjected t o  an a x i a l  load and considering t h e  

r e su l t i ng  longi tudina l  displacement. 

C .  Subjected t o  a d i s t r ibu ted  uniform l a t e r a l  load. 

4. Consider t h e  incorporation of s losh dynamics i n t o  t h e  beam and 

determine t h e  slosh dynamics matrix. 

1.2 REPORT FORMAT 

Section 3 b r i e f l y  def ines  the matrixes which a r e  developed i n  the remainder of 

t h i s  repor t .  

t h e  use of matrixes. 

I t s  primary purpose i s  to f ami l i a r i ze  readers  not f ami l i a r  with 

i 

Sections 4 and 5 develop a general  transmission matrix i n  two d i f f e r e n t  ways. 

Section 4 develops t h e  ma t r ix  from t h e  so lu t ion  t o  a fourth-order d i f f e r e n t i a l  

equation developed from four  f i r s t -o rde r  d i f f e r e n t i a l  equations.  

develops t h e  same transmission matrix d i r e c t l y  from t h e  four f i r s t -o rde r  d i f -  

f e r e n t i a l  equations.  Spec i f ic  beam cases are then presented i n  Appendixes A 

and B f o r  avoidance of r e p e t i t i o n  and loss  of understanding of t h e  technique 

involved. 

Section 5 

Sections 6 and 7 present  the s losh  dynamics matr ix  and t h e  nonuniform s t ruc-  

t u r e ' s  transmission matrix development, respec t ive ly .  

Sample solut ions a re  then presented i n  Sect ion 8 and conclusions are given i n  
Section 9. 

If t h e  reader  i s  only in t e re s t ed  i n  techniques,  he can read Sections 4, 5 ,  6 ,  
and 7 without loss  of understanding. 
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Section 2 

SUMMARY 

The dynamics analysis  of bending vibrat ions of f l ex ib l e  vehicles is approached 

through a wave-transmission concept as opposed t o  t h e  t r a d i t i o n a l  normal-mode 

method. 

t i ons  r e su l t i ng  i n  t he  cha rac t e r i s t i c  fea ture  of a widely dispersed s p a t i a l  

energy d i s t r ibu t ion .  The parameters of t he  s t ruc tu re  are d i s t r ibu ted  i n  

s p a t i a l  coordinates as they are i n  ac tua l i ty .  The current method of analysis  

meanwhile i s  the lumped-parameter type and only approximates the behavior of 
t h e  s t ruc tu re  w i t h  ordinary d i f fe ren t ia l  equations. The m a s s  and i n e r t i a  are 

lumped at s t a t ions  along the beam and the  normal modes are then calculated.  

computation t i m e s  are greater and resu l t ing  accuracy is  degraded r e l a t i v e  t o  

t h a t  achieved by t h e  wave-transmission o r  distributed-parameter method. 

The system t o  be modeled is  governed by p a r t i a l  and/or i n t e g r a l  equa- 

"he d i s t r ibu ted  parameter method involved the  determination of a transmission 

matrix r e l a t ing  the  state variables a t  one end of a uniform beam segment t o  

those at the other  end. Then, a transformation technique is  applied r e l a t i n g  

t h e  l o c a l  state var iables  t o  the  cha rac t e r i s t i c  var iables  of the beam and 

r e s u l t i n g  i n  a transmission l i n e  analog model. This model is composed of two 

end-effect matrixes and two propagation matrixes. The transmission matrix and 

associated matrix are first obtained i n  general  terms and then four uniform 

beam cases are considered: 

ro ta ry  i n e r t i a ;  ( 2 )  appl icat ion of an a x i a l  force; ( 3 )  consideration of the  

resultant longi tudinal  displacement from t h e  ax ia l  force; and ( 4 )  appl icat ion 

of  a uniform, d i s t r ibu ted  lateral  loading. 

segment transmission matrix,  a nonuniform s t ruc tu re  is formed. The na tura l  

frequencies are obtained through the  modal technique and the dis t r ibuted-  

parameter technique. 

as w e l l  as d i f f i c u l t i e s  associated wi th  t h e  d i s t r ibu ted  parameter method are 

described. 

(1) a free-free beam w i t h  shear compliance and 

Next, using a t h i n ,  uniform bean 

These techniques are compared and some of the advantages 

Because launch vehicles  may be simulated w i t h  as many beam segments as required 

f o r  accuracy, t h i s  simple example const i tutes  t he  first s t ep  i n  the  extension 

3 



& of t h e  wave-transmission concept f o r  t h e  analysis  of launch vehicles .  Inclusion 

of t h e  e f f e c t s  of t h e  launch vehicle  propel lan t  required a spec ia l  transmission 

matrix t o  be developed t o  represent  t h e  propel lan t ' s  dynamic c h a r a c t e r i s t i c s .  

These matrixes may then be incorporated i n t o  the  beam matr ix  at pos i t ions  cor- 

responding t o  the  hydrodynamic forces .  

The s a l i e n t  cha rac t e r i s t i c s  of t h e  transmission-concept technique are t h a t :  

1. It includes both t h e  s p a t i a l  configuration and t h e  propagating 

t i m e  for  t h e  wave t o  t r a v e l  along t h e  s t ruc tu re .  

2. It permits inves t iga t ion  of t he  r e f l e c t i o n  of f l e x u r a l  waves as 

they encounter d i scon t inu i t i e s  along t h e  beam. 

3.  It y ie lds  more accurate computation of response than t h e  normal 

mode techniques. 

4. Incorporation of t h e  s loshing masses i n t o  t h e  bending; equation 

is  d i r e c t .  

5 .  Manipulation of t h e  matrix t o  form t r a n s f e r  functions is 
straight-forward and simple but  computer simulation i f  d i f f i c u l t .  



Section 3 

DEFINITION OF MATRIX FQRMS 

Section 3 def ines  the  matrix forms which w i l l  be used i n  t h e  following sec t ions  

of t h i s  repor t .  For addi t iona l  discussion, refer t o  Reference 7 and 11. 

3.1 TRANSMISSION MATRIX 

A transmission matrix is general ly  defined as a matrix which r e l a t e s  input 

states such as forces  and v e l o c i t i e s  t o  those states at the  output terminals .  

A wide va r i e ty  of  transmission matrixes e x i s t  fo r  any given system depending 

upon the states defined as inputs  and outputs.  A transmssion matrix,  when so 

defined,  can be conveniently used i n  descr ibing t h e  performance of a series of 

s t ruc tu res  connected i n  tandem. For example, non-uniform beams may be approxi- 

mated t o  any degree of accuracy desired by a s e r i e s  of  describing transmission 

matrixes,  w i t h  parameter var ia t ion  along the  beam taken i n t o  consideration. 

The output states from one uniform "building-block" transmission matrix become 

the  input  states for  the next dissimilar but uniform "building-block" transmis- 

s ion  matr ix  u n t i l  the  ove ra l l  beam is f i n a l l y  represented. 

The t h r e e  bas ic  methods of obtaining t h e  uniform transmission matrix a re :  

(1) a fourth-order d i f f e r e n t i a l  equation approach; (2) a state var iab le  ap- 

proach; and (3) an equation approach f o r  lumped elements. 

methods are fo r  d i s t r ibu ted  s t ruc tures  while the last i s  f o r  a lumped element 

such as a sloshing mode. The non-uniform beam transmission matrix can nuw be 

found by merely multiplying the  uniform transmission matrixes together  o r  by 

another  method of factored forms which takes i n t o  consideration gradual para- 

meter va r i a t ion  along the  beam. 

i n  t h e  remainder of t h i s  report .  

The first two 

These methods will be fu r the r  enumerated upon 

3.2 END-EFFECT MATRIXES 

The fourth-order d i f f e r e n t i a l  equation and state var iab le  approaches both 

yield an analog t o  transmission l ines .  

and transmission matrixes are factored t o  form a "building-block" diagram 

That is, t h e  r e su l t i ng  so lu t ion  s teps  

5 
5 



compcsed of two (4x4) matrixes and two (2x2) matrixes. 

are referred t o  as the  end-effect matrixes. These matrixes r e l a t e  t h e  s t a t e s  

at the  end of  a uniform beam segment t o  a s e t  of c h a r a c t e r i s t i c  states y e t  

t o  be defined. 

The (4x4) matrixes 

3 . 3  PROPAGATION MATRIXES 

In the previously mentioned analog transmission-line model, t h e  two (2x2) 

matrixes are refer red  t o  as propagation matrixes. 

t he  cha rac t e r i s t i c  s t a t e s  o r  propagating s t a t e s  of  t he  wave moving down and 

back along the  uniform beam, and a re  composed i n  general  of a t i m e  delay and 

phase. The cha rac t e r i s t i c  var iables  are composed of combinations of the  

system states. 

These matrixes r e l a t e  

3.4  CHARACTERISTIC ADMITTANCE AND INPZPT ADMITTANCE MATRIXES 

The cha rac t e r i s t i c  admittance matrix,  by de f in i t i on ,  is t h e  matrix r e l a t i n g  the 

v e l o c i t i e s  t o  the forces at the  same end for a semi- inf ini te  beam. A fu r the r  

property of the  c h a r a c t e r i s t i c  admittance matrix i s  that  terminat ion of  the  

beam i n  it cancels all re f l ec t ions .  For a beam of length 1, it is r e fe r r ed  t o  

as t h e  input admittance matrix f o r  t h e  beam. Of course,  i n  both ins tances ,  the 

inversion r e l a t ion  is referred t o  as the  impedance matrix.  

6 



I :  

, 

Section 4 

GENERAL FOURTH-ORDER DIFFERENTIAL EQUATION APPROACH 

In  Section 4, t he  distributed-parameter approach t o  t ransverse  bending of a 
fYee-free beam with secondardy dynamic e f f e c t s  considered is  appl ied t o  a 

general  system model. Specif ic  cases are described i n  Appendix A. 

4 . 1  GENERAL SYSTEM AND TRANSMISSION MATRIX 

The general  system matrix and i ts  r e l a t ion  t o  the  state varicibles are derived 

frm four  first-order d i f f e r e n t i a l  equatiuns f o r  the model. These are 

(1) summation of forces i n  t he  t ransverse coordinate;  (2 )  s t a t i c  beam flexure;  

(3)  moment balance; and ( 4 )  geometry considerations.  This r e s u l t s  i n  t h e  

general  matrix equation : 

d 
dx 
- 

-Y' 

8 

m 

. Q  

0 

0 

0 

5 .K 

o r  w r i t t e n  i n  s t a t e  vector  form: 

5 O K2- 
0 1 0  

K3 O K4 

0 0 0 .  

d - y r  
dx 

The four  equations may be manipulated t o  

equation of t he  form: 

. .  
-Y 

6 

m 

' 9. 

AY ( 4-2 

obtain t h e  desired fourth-order 

The procedure now is  t o  obtain the  equation's c h a r a c t e r i s t i c  roots  o r  

Eigenvalues from i t s  so lu t ion  and f i n a l l y  obtain the  general  transmission 

matrix. 

7 



8 

The general  solut ion of  Equation 4-3 is of the form: 

( 4-4 1 Ax/ II y = C e  

The Eigenvalues may be obtained e i t h e r  through the standard method of solving 

the  matrix equation (A-IX) = 0 ,  o r  by subs t i t u t ion  of the so lu t ion  in to  Equation 
4-3. Choosing t h e  l a t t e r  approach, though both y i e ld  i d e n t i c a l  answers, results 

i n  the  equation: 

The cha rac t e r i s t i c  roots  are found t o  be: 

o r  i n  matrix form: 

P =  

0 0 0 X1 

0 0 A2 0 

0 0 -X2 0 

1 0 0 0 -A 

( 4-6a) 

( 4-6b ) 

( 4 - 6 ~  ) 

( 4-6d) 

Because the Eigenvalues 

now wri t ten i n  a more convenient form. 

r e  now known, the  so lu t ion  of Equation 4-3 may be 

( 4-7 ) 

t 



r'urthermore, because a l l  four dependent var iab les  have e s sen t i a l ly  the  same 

so lu t ion  form, f o r  convenience the  so lu t ion  f o r  q w i l l  be used. 

Referring t o  matrix Equation 4-1 and performing the  operations indicated by 

t he  following three equations: 

-1 * K2 
8 = (- - qj+ 

dx 

d8 
dx 

m = -  

t he  following matrix equation is written. 

where : 

o r  

Y(x) = W(x)A 

r .2 

1 KT=q [$-- 11 K5 K2] 

A1 

A2 

A3 

A4 

9 



The transmission matrix r e l a t ing  the system variables at end x t o  those at end 

PO is  nuw obtained. 

where : 

w(0) = w(x) = 

X=O 

10 

w-l(o) = 1 

0 

K6 

0 

.1 

0 

-K5K7e 

0 

K K R  
5 6  
x2 

0 1 -A 
K I I  5 

0 K 

- 

7 

0 1 

and 

-1 0 

x2 - -  
K R  5 

0 

7 2K7 
II 

0 

0 -L/xl 0 

1 0 ‘K6 

0 m2 0 

( 4-18) 

Performing the matrix operation W( x)W-’( 0 )  results i n  the general  transmission 

matrix T. 



Where : 

[Y2/K51 

. . . Lay3] 
I '(2)) 1 

( 4-20 ) 



4.2 GENERAL EIGENVECTOR MATRIX 

The solut ions of t he  homogeneous set of equations defined by t h e  matrix 

Equation 4-1 are now the  associated Eigenvectors. 

'i where i r e f e r s  

Eigenvalue. 

t o  t he  set so lu t ion  3rre ponding t 

Now the  ith Eigenvector corresponding t o  the  ith Eigenvalue Xi 
f'rom the  following four equations. 

+ K U ) = A .  Uli (K1 '2i 2 4 i  1 

ugi = A. u2i 
1 

( K 3  U2i + K4 U4i) = hi  Uji 

K5 Uli = A. 1 U4i 

( 4-22 ) 

a pa r t i cu la r  

is  determined 

Because Eigenvectors a re  uniquely determined i n  t h e i r  d i rec t ions  and only 

t h e i r  lengths are a r b i t r a r y ,  t he  Eigenvector can be normalized i n  any manner 
desired.  Choosing U2i = 

'li 

'2 i 

'3i 

u 4 i  

X i  Xi3 - K3Xi 

K5 K4 
- 

Ai 

2 
'i 

Xi3 - K3Xi 

K4 

Ai4 - K3Xi 

K4K5 

2 
'i 

Xi3 - KgAi 

K4 

(4-24) 



The spec i f i c  Eigenvector matrix is: 
2 X24 + K X 2 X14 - K3X1 

I (  3 2 )  [: K4K5 K4K5 

-1 2 
-X2 

3 + K A  
2, 

K4 

2 X24 + K X 
( 3 2 )  

K4K5 

JX2 

2 
2 -a 

- X ~ - K X  

K4 
2, 

2 3( 

X14 - K3X1 2 

( 1 
K4K5 

X1 

( 
K4 

( 4-25 1 I 
4.3 GENERAL END-EFFECT MATRIXES 

The s p a t i a l  var iab les ,  Y = (-y, 8 ,  m,  qIT, a r e  now re l a t ed  t o  a s e t  of char- 

a c t e r i s t i c  variables of transverse bending, V = ( U  , v , v , u’)~, through t h e  

Eigenvector matrix U: 

- - +  

Y = W  (4-26) 

Rewriting Equation 4-26 i n  a (2x2) par t i t ioned  form r e s u l t s  i n :  

T 
y1 = (-Y, e,) 

Y2 = ( m , s )  T 

T Vi = (u-, v-) 

( 4-28a) 

(4-28b) 

( 4-28~  ) 

(4-28d) 

= (2x2) array of t he  (4x4) Eigenvector matrix. 
%1’ 5 2 ’  u21’ u22 



Suitably manipulating t h e  above matrix equation results i n  the block diagram 

fo r  the  beam w i t h  secondary dynamic e f f ec t s  (Figure 4-11. 

(4-30b) 
( -u ;; u 22) 

(UI l  u;i, (u12411U;; U2J 

R = RIGHT END E F F E C T  MATRIX = 

Pr1,2 = PROPAGATION MATRIXES 

Figure 4-1. Beam Block Diagram 

4.4 GENERAL PROPAGATION MATRIXES 

The general  propagation matrix is found through the use of the  c h a r a c t e r i s t i c  

vector r e l a t ion  : 
Y = W  

where V s a t i s f i e s  the equation: 
d - v =  PV dx 

and has the  solut ion:  

(4-30) 

( 4 - 3 )  



' -  

The exponential  matrix can be found by means of  Laplace transform w i t h  respect  

t o  x (Reference 12). 
I .  

Lett ing : 
E(x) = epx and E ( s )  = XE(x) 

then : 
E ( s )  = (SI  - P)-l and E(x) =%-'(SI - PI-' 

0 

1 q 
0 

0 

Ala e 

0 

0 

0 

0 

0 

A211 e 

0 

0 

1 
(s-x3) 

0 

0 

0 

0 

e A3g 

0 

and t h e  r e l a t i o n  from Equation 4-33 is obtained, t h a t :  

L 

0 

1 
G q T  : I  

-R J! 1 

0 

L 

0 0 

0 e 0 

0 0 e 

0 0 0 e 

e 

-3R,J! 

+JR2J! 

(4-33) 

(4-34) 
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It is evident from matrix Equation 4-35 and Figure 4-1 t h a t :  

-R R 
'r =[ e l o  ;JR2R] 

1 

and 

- P , R  

' r2 = [ e  e!RIR ] 

( 4-36) 

(4-37) 

4.5 GENERAL CHARACTERISTIC ADMITTANCE MATRIX 

Because the  Eigenvectors and the  r e l a t ions  between the s p a t i a l  and character-  

i s t i c  variables are  knm ¶ t h e  conditions for  the cha rac t e r i s t i c  termination 

can be determined. 

tance is defined f o r  a semi- inf ini te  l i n e  o r ,  i n  t h i s  case,  a beam. If the  

semi-infinite beam extends from the  right-end of the model i n  Figure 4-1 t o  
- 

As i n  transmission-line theory,  the cha rac t e r i s t i c  admit- 

then the components u+ and vt w i l l  be zero o r  V2 = 0 i n  the  matrix Equa- 

Th i s  matrix re la t ion  y ie lds  the  desired c h a r a c t e r i s t i c  admittance at the  

right-end o f  the beam: 

Y1 = ( u  u 11 21 ly2 ( 4-39 1 

where : 

-1 
(U11U21 = Charac ter i s t ic  Admittance at the r i g h t  face.  



Section 5 
STATE VARIABLE APPROACH 

The transmission matrix developed i n  Section 4 can a l s o  be determined i n  
another manner. 

t i ons  were reduced t o  one of fourth order i n  y and t h e  r e su l t i ng  steps taken 

t o  obtain t h e  associated transmission matrix. Section 5 out l ines  t h e  proce- 

dure t o  obtain the same transmission matrix d i r e c t l y  from t h e  four first-order 

equations.  

In  Section 4,  a set  of four  f i r s t -o rde r  d i f f e r e n t i a l  equa- 

I f  four  f i r s t - o r d e r  equations w i t h  constant coe f f i c i en t s ,  represented i n  t h e  

matrix equation, are considered: 

- -  dy - AY 
dx 

t he  so lu t ion  of Equation 5-1 is  known t o  be: 

= eARy 
Y x = ! 2  x = o  

(5-1) 

(5-2) 

and, hence, immediately, e*' is  t h e  transmission matrix t h a t  is sought. 

Therefore,  it remains t o  f i n d  eAR. 

represented as an i n f i n i t e  s e r i e s  expansion: 

The transmission matr ix ,  T = eAR, can be 

3 R3 T = (1 + AR + A ~  &-+ A I+ ... 
3. (5-3) 

The above expansion is s impl i f ied  by using t h e  Cayley-Hamilton theorem, which 

r e s u l t s  i n :  

The Eigenvalues f o r  t he  system may be now determined from the  c h a r a c t e r i s t i c  

equat ion f o r  A t ,  i .e.: 



Now A9. may be replaced by i ts  four Eigenvalues and t h e  four  constants,  Co, C1, 

C2, and C found. "hat i s ,  3 

2 2  3 3  X i &  
= ( C 0 I  + c x 9. + c 2 x p  + C3Xi9. 1 l i  e 

where i = 1, ..., 4. 

N o w ,  t h e  transmission matrix as defined by Equation 5-4 i s  formed. 

and r e s u l t s  a r e  not presented because they are straightforward and the r e s u l t s  

a re  i d e n t i c a l  t o  those obtained i n  Section 4. 

The detai ls  
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, 
Section 6 

FUEL-SLOSHING TRANSMISSION MATRIX 

Section 6 describes two methods of including t h e  fuel-slosh dynamics i n  the  

distributed-parameter approach t o  f l ex ib l e  beams. 

spring-mass system cambined w i t h  t h e  transmission matrix f o r  each uniform beam 

sec t ion .  The other  method u t i l i z e s  a d i s t r ibu ted  f l u i d  mass incorporated w i t h  

the  transmission matrix f o r  the  beam while s t i l l  re ta in ing  t h e  spring-mass 

system fo r  t he  first sloshing mode. 

One method involves a lumped 

The in t e rac t ion  between t h e  tank w a l l  and t h e  f l u i d  must satisfy a force  and 

def lec t ion  re la t ionship .  A matrix representation of t h i s  i n t e rac t ion  along 

t h e  length of t h e  tank appears qu i te  complex and has been deferred f o r  fu ture  

study. 
uniform beam corresponds t o  changing t h e  densi ty  per  u n i t  length of t he  beam. 

Because no s t i f f n e s s  can be a t t r i bu ted  t o  t h e  f l u i d ,  t he  other  cha rac t e r i s t i c s  
of the  beam matrix do not change. The beam w i t h  added density w i l l  have a 

slower response, BS would be expected f o r  a tank of f l u i d .  

The method of d i s t r i b u t i n g  t h e  nonsloshing l i q u i d  along the tank or 

Cyl indr ica l  tanks are considered and only the  first s loshing mass i s  used. 

This is j u s t i f i e d  because higher sloshing modes have p r a c t i c a l l y  no influence; 

they have greater damping r a t i o s ,  and l i m i t e d  peaking ( amplitudes). 

more, a grea t  deal of tu rbulen t  mixing accompanies t h e  higher frequency tank 

o s c i l l a t i o n s .  
t he  s loshing m a s s  t o  the  propel lant  mass f o r  t h e  second sloshing mode is very 

s m a l l  campared t o  the  f i r s t  mode. 

Further- 

I n  a c i r c u l a r  cy l indr ica l  tank, (Reference 131, t he  r a t i o  of 

For f l e x i b l e  missile (beam) stuides, it i s  desired t h a t  the  forces and moments 

derived from the  mechanical analogy ac t  at points  on the  beam, corresponding 

t o  those  of t he  forces and moments as derived from a hydrodynamic solut ion.  
Although exact so lu t ions  t o  t h e  f lex ib le -wal l  problem do e x i s t ,  they a re  com- 

p l i c a t e d  and appl icat ion is anything but d i r e c t .  

t ransmission and the  associated transmission matrix a re  r e l a t i v e l y  simple and 

s t ra ightforward when applied t o  t h e  flexible-wall  problems. 

As w i l l  be seen, t h e  wave 

19 



The wave-transmission method has a d i s t i n c t  advantage over t h e  s tandard modal 
approach f o r  incorporating s loshing masses. 

approach, t h e  sloshing masses are included d i r e c t l y  i n t o  the  bending equation 

with use  of a simple matrix mul t ip l ica t ion .  

frequencies and modal masses are determined without t h e  s loshing masses, 
Later, when t h e  equations are i n  generalized coordinates or t r a n s f e r  fbc t ion  

forms, t h e  sloshing masses are included. The def lec t ion  at t h e  s loshing mass 

i s  a sunnnation of t h e  mode def lec t ions  and cannot be as accurate as t h e  deflec- 

t i o n  used i n  the  transmission approach. 

I n  t h e  transmission-matrix 

I n  t h e  modal approach, t h e  na tu ra l  

2 
UNIFORM 
BEAM 
SEGMENT 

Mot lo 

6.1 LUMPED BULK MASS AND MODE SPRING-MASS APPROACH 

A 

3 
UNIFORM UNIFORM 
BEAM *BEAM 

SEGMENT SEGMENT k 

I 

This approach f i r s t  lumps t h e  f l u i d  at rest (bulk mass) and t h e  first s loshing 

mode and then interconnects t hese  through uniform beam segments as depicted i n  

Figure 6-1. 

Figure 6-1. Incorporated Sloshing Dynamics and Beam Model 

20 



Transmission matrixes are found f o r  each of t h e  lumped elements and then the  

ove ra l l  transmission matrix is presented i n  general  matrix form. Next, t he  

transmission matrixes f o r  the lumped elements w i l l  be found. Therefore, con- 

sider the  model f o r  the first sloshing mode i n  Figure 6-2. 

c 
1ST SLOSHING MASS 

Y 

Figure 6-2. Sloshing Model 

What is desired is obtaining a transmission matrix r e l a t i n g  3 R  t o  3L. Writ ing  

t he  governing equations : 

21 



i n  Laplace notation: 

2 (y - y3)k + S(Y - y3)c + s YT = 0 

&3 -(y - Y3)k - S(Y - y3)c 
2 

Q3 = s yM1 

k + sc 
k + sc + s M y = (  2 ) y 3  

1 

and therefore:  

2 s M (k + sc) - 1 
83- s 2 MI + sc + k y3 

because : 

"he re su l t i ng  transmission matrix i s :  

where : 2 s (k + sc)M, 
2 v -  

s M1 + sc + k 

22 
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( 6-11 1 



while t h e  transmission matrix f o r  t h e  undisturbed o r  fluid at rest ,  a t  point  
2 is: 

Y2R 

'2R 

M2R 

'2R. 

1 0 0 0 

0 1 0 0 

0 1 2 
I os 

0 2 
MOS 

0 

0 

1 

y21 

021 
m21 
q21 

( 6-12 ) 

The ove ra l l  transmission matrix T41 is developed w i t h  use  of t he  following 

re la t ionships  : 

- 
'2L - T2L,1y1 

'2R = T2Y2L 

- .T -T *T -T '3L - T3L,2RY2R '4 = !T4,3R 3 3L,2R 2 2L,1)'1 (6-13) 

4 9 1  

T '3R = T3Y3L 

'4 

T are  the  uniform beam transmission matrixes.  
2L,1' 3L,2R' and T4,3R where T 

6.2 DISTRIBUTED BULK MASS AND LUMPED MODE SPRING-MASS APPROACH 

The second model considered has a d i s t r ibu ted  bulk mass, while t h e  first 

s losh ing  mode remains lumped as seen i n  Figure 6-3. 

AS befo re ,  we  s ee  immediately t h a t  t he  ove ra l l  transmission matrix is given by: 

Y3 = (T T 3,2 2R,2LT2,1) '1 ( 6-14 
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I 
UNIFORM BEAM SEGMENT 

DISTRIBUTED FLU!D MASS 
PLUS 

I 

2 3 

2 L  2R UNIFORM 

SEGMENT 

a 
.I BEAM 

2 L  2R UNIFORM 

SEGMENT 

a 
.I BEAM 

_1 

Figure 6-3. Distributed Bulk Mass and Lumped Spring-Mass Model 

T is  a uniform beam transmission matrix. 

T i s  a uniform beam transmission matrix w i t h  t h e  addi t ion of t he  
392 

2 9 1  

where : 

nonsloshing f l u i d ' s  density t o  t h e  densi ty  o f  t h e  t a n k ,  i .e . ,  

t h e  densi ty  increases and t h e  radius of  gyration is adjusted.  

i s ,  of course, the  f irst  sloshing mode's transmission matrix 

defined by Equation 6-10. 
T2R ,2L 



Section 7 

TRANSMISSION MATRIX FOR NON-UNIFORM STRUCTURE 

7.1 CASCADING METHOD 

The d i s t r ibu ted  parameter concepts of propagation and r e f l ec t ion  are applied 

t o  a t h i n ,  uniform beam, i.e., secondary dynamic e f f e c t s  are neglected. 
somewhat s i m i l a r  manner as i n  Section 4.1, the  transmission matrix f o r  t h i s  

case w i l l  be developed f irst .  

analogous method t o  propagation and re f lec t ion  treatment i n  t h e  wave equation. 

For fur ther  details of t h i s  method of obtaining the  transmission matrix f o r  

a thin-uniform beam, t h e  reader is re fer red  t o  Reference 10  and t o  Appendix B. 

I n  a 

Transverse v ibra t ions  are approached i n  an 

Figure 7-1 shows t h e  nomenclature and s ign conventions f o r  shear forces ,  Q, 

moments, M, angular displacements, 8 ,  and t ransverse displacements, Y, of  a 

t h i n ,  uniform beam and microelement. 

t Q1 1 

I 
Q 

Figure 7-1. Beam and Sign Convention Model 
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The four f i r s t -order  d i f f e r e n t i a l  equations describing t h e  model are reduced 
t o  a canonical form and wr i t t en  i n  compact s t a t e  vector  form as: 

where 

dY - = AY dx 

0 1 0 

0 0 0 S 

A =  

a 

(7-1) 

(7-2) 

(7-3) 

. 

Finding t h e  Eigenvalue matrix P and t h e  Eigenvector matrix U of matr ix  A i n  

t h e  usual manner, and obtaining a transformation matrix B which operates  upon 

t h e  complex conjugate p a i r s  i n  P t o  form only real terms, P* may be wr i t t en  and 

defined as: 

and 

(7 -6 )  -1 -1 A = ( U P  U 

The transformation matrix U* t h a t  provides t h e  t ransformation between t h e  A 

matrix and t h e  quasidiagonal P* matrix,  is found as follows: 

P = (B-’P*B) ( 7-71 



4 
I .  and through subs t i tu t ion  in to  Equation 7-6, 

A = (U3-l) P* ( B U - l )  

o r  t h a t  
U* = (UB'l) 

a new state vector V i s  now chosen so t h a t :  

Y = u*v 

and which satisfies: 

d V  - = p*v 
dx 

whose so lu t ion  i s  

( 7-8 

( 7-9) 

( 7-10 

( 7-11 

The matrix ea'* is the  propagation matrix and V and V are the  cha rac t e r i s t i c  1 2 
vector values at s t a t ions  1 and 2 and a is  the  length of the  beam. Equation 

7-10 can now be wri t ten as: 

( 7-13 I1P* 
v1 y2 = u*v2 = '(U*e 

and 

Y1 = u*vl, ( 7-14 

subs t i t u t ion  of Equation 7-14 in to  7-13, r e s u l t s  i n  Equations 7-15 and 7-16. 

aP*u*-l 
y1 y2 = (U*e ( 7-15 

( 7-16 1 - 
y2 - *2,1 y1 

"he ( 4  x 4) T 

r e l a t i n g  t h e  states at end 2 t o  those at end 1. 

matrix is the  transmission matrix f o r  a th in ,  uniform beam 
291 
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End-effect matrixes have t h e  same form as those found i n  Section A.3 and t h e  

spec i f i c  values f o r  the case are given i n  Appendix B. 

The non-uniform beam can now be formed o r  approximated by a series of uniform 

beam elements because t h e  output of  one uniform segment becomes t h e  input f o r  

t h e  next u n t i l  t h e  ove ra l l  s t ruc tu re  is completed. 

approach is  equally applicable f o r  t h e  uniform transmission matrixes developed 

f o r  a beam with secondary dynamic e f f e c t s  considered. 

s impl ic i ty ,  t h e  method w i l l  be developed f o r  t h e  t h i n ,  uniform beam segments 

spec i f i ca l ly .  

T h i s  "building-block" 

But f o r  t h e  sake of  

If, f o r  example, t h e  s t r u c t u r e  is adequately approximated by three  t h i n ,  uniform 

beam segments as depicted i n  Figure 7-2, than t h e  o v e r a l l  transmission matrix 

is  formed from the  th ree  segment transmission matrixes and r e l a t i o n s  as: 

- (7-17) 
'2 - T2,1 '1 

- 
'3 - T3,2 '2 

- 
'4 - T4,3 y3  

o r  

- 
'4 - T4,1 '1 

( 7-10) 

( 7-19) 

(7 -20)  

(7-21) 

Therefore, i n  general, fo r  a beam of n uniform segments, t h e  o v e r a l l  t rans-  

mission matrix and s ta te  vector r e l a t i o n  becomes: 

= (T T 0 0 .  T2,1) Y1 'n+l n+l,n n,n-1 

I-'"- 

( 7-22 ) 



< 
4 

N r a L  t 
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7.2 MODIFIED CASCADING METHOD 

Consider now once again t h e  model of t h r e e  beams t o  form a non-uniform s t ruc-  

t u r e  as i n  Figure 7-2. If w e  assume t h a t  some parameter varies only s l i g h t l y  

from t h e  left-end of beam 1 ( 1 L )  t o  t h e  right-end of beam 3 ( 3 R ) ,  then .a  some- 

what d i f f e r e n t  approach may be taken. This approach is  a c t u a l l y  a s l i g h t  

var ia t ion  of the approach given i n  Section 7.1. 

A t  t h e  in te r face  between two uniform beams, t h e  c h a r a c t e r i s t i c  var iab les  are 

related according to:  

and t h e  ove ra l l  transmission matrix r e l a t i o n  equation has t h e  form: 

( 7-24] 112p2 -1 IllPl -1 
Y~~ = ( u 3  e u2 e U2 U 1 e u1 ylL 

"p3 "1 

Now, i f  t h e  cascade of uniform beams has a s l i g h t  va r i a t ion  of a ' s  which i s  

not d r a s t i c a l l y  d i f f e r e n t ,  then 
i 

% = a1 and a 2 where F 

similar r e l a t i o n  holds for U-l U2. 
and S21 a r e  matrixes with small elements because a '21 

Then Equation 7-214 can be wr i t t en  as: 3 

Assuming all na t r ix  products of two o r  more r, o r  6 matrixes neg l ig ib l e  i n  t h e  

l i m i t  compared t o  only one small E,- o r  6 ,  



1 .  
I 

. 
where : = ( G G G  + G g  G G  + G G g  G )  ( 7-28) 3 2 1  3 3 2 2 1  3 2 2 1 1  

3 2 2 1 1  3 3 2  2 1  N12= ( G G 6  H + G  6 I I H )  ( 7-29 

N21 3 2 2 1 1  3 3 2 2 1  

N22 3 2 1  3 3 2 2 1  3 2 2 1 1  

= ( H H 6  G + H 6  G G )  ( 7-30 I 

= ( H H H  + H [  H H  + H H C  H )  ( 7-31) 

?r 
When t h e  in t e r s t age  t r a n s i t i o n  is  very gradual ( a  

5 matrixes might be completely neglected r e s u l t i n g  in :  

= ai) ,  then t h e  5 and i+l 

= G G G  3 2 1 

N12 = N21 = 0 

= H H H  N22 3 2 1 

(7-32 I 

(7-33) 

( 7-34 1 

Even though ai+ # ai, t h e  r e l a t i o n s  f o r  N and N2 t ake  on a p a r t i c u l a r l y  

simple form if accuracy requirements are relaxed. For t h e  simple, thin- 

uniform beam: 

11 

where : 

and : 

* * * 
( kjP3 + 9" P + !LIP1) 2 2  N,,  = e 

o r  

JTts 1 cos 9 s i n  JTts 
N,, = e 
A I  [-sin ~ ~ t s  cos Q 

1 cos JTts s i n  JTts 
- s in  JTts cos JTts NZ2 = e 

(7-35) 

(7-37) 

( 7-38) 
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Therefore, when these  approximations are va l id ,  t h e  ove ra l l  transmission between 

t h e  cha rac t e r i s t i c  states is  t h e  same as f o r  a uniform beam except T i s  used. 

If the  beam i s  broken i n t o  a much l a r g e r  number of s emen t s  o r  sec t ions ,  t h e  

gradual var ia t ion  i n  parameter a, from end t o  end, could accumulate a l a rge  

difference from the  first t o  last segments. In  t h i s  case,  t h e  approximations, 

become l e s s  va l id  and t h e  ove ra l l  beam approximation becomes inaccurate.  

t 
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Section 8 

SIMULATIONS AND SAMPLE SOLUTIONS 

, 

Section 8 presents some of  the simulation results, so lu t ions ,  program discus- 

s ions,  and d i f f i c u l t i e s  encountered when using t h e  distributed-parameter o r  

wave-transmission approach t o  transverse vibrat ions of f l ex ib l e  beams. 

8.1 NATURAL FREQUENCY COMPARISON 

The n a t u r a l  frequencies f o r  a cascade of three t h i n ,  uniform beams were first 

determined using t h e  Myklestad method (Reference 14). 
s t ruc tu re  is approximated by one i n  which t h e  mass is concentrated at  d i sc re t e  

points  while t h e  f lexura l  s t i f f h e s s  o f  d i s t r ibu ted  massless elements i s  used. 

Generally, uniform massless e l a s t i c  f ie lds  are assumed between the lumped m a s s  

points .  

t h e  spatial d i s t r ibu t ion  of mass i s  included. 

In t h i s  method, the  

However, the wave-transmission-matrix method has the  advantage t h a t  

A comparative study w a s  accomplished i n t o  the  advantages and disadvantages 

of t h e  two methods of determining the  na tura l  frequencies of t he  composite, 

three-beam, cascaded s t ruc ture .  Theoretically,  because of t h e  s p a t i a l  dis-  

t r i b u t e d  nature of the  transmission matrix method, one would expect t o  obtain 

t h e  exact na tu ra l  frequencies of t h e  beam. 

approximations t o  t he  na tu ra l  frequencies. O f  course, lumping the  mass at a 

large number of s t a t ions  will result i n  more accurate estimates of the  na tu ra l  

eequenc ie s ,  but at the  expense of more computation. Use of t h e  wave- 

transmission method, i n  prac t ice ,  requires  a f a i r l y  comprehensive coverage 

of t h e  frequency spectrum for  accurate estimates o f  t h e  na tura l  frequencies. 

The most e f f i c i e n t  procedure (wave transmission o r  Myklestad) might be de- 

f ined  as t h e  one which yields  the  desired number o f  na tura l  frequencies w i t h  

acceptable accuracy with t h e  least computation and engineering cost .  

The lumped model can y i e ld  only 
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"he wave-transmission approach t o  obtain t h e  na tura l  frequencies of t he  non- 

uniform, three-beam cascade (Figure 7-2) requires  t h a t  proper boundary 
conditions be applied t o  t h e  ove ra l l  transmission matrix re la t ions .  I f  t h e  

model was representat ive of a launch vehicle  on a launch pad, the spec i f i ed  

end conditions would be: 

However, fo r  t he  free-free condition as i n  t h i s  study, moments and forces a t  

both ends a re  zero. Therefore, f o r  example, i f  t h e  ove ra l l  transmission 

matrix were composed of a cascade of t h ree ,  t h i n  uniform beam" transmission 

matrixes,  then t h e  overa l l  transmission matrix wr i t t en  i n  a ( 2  x 2) par t i t ioned  

sense would r e l a t e :  

where : 

f = (M,QIT 

and the frequencies which make 1 (T 
of t h e  composite free-free beam. 

quencies of a system i s  analogous t o  t h a t  of' a system composed of concentrated 

masses and springs,  namely, appl ica t ion  of proper boundary condi t ions,  

f3n = 0,  and obtaining t h e  r e su l t an t  determinant. 

) I 2 1  3R,1L 
This procedure o f  f i n d i n g  t h e  na tu ra l  fre- 

= 0 are t h e  na tu ra l  frequencies 

* 
Equivalent t o  (J and T being zero i n  Appendix A.2 o r  usinR t h e  r e s u l t s  i n  
Section 7.1 and the transmission matrix i n  Appendix B. 



For s impl i f ica t ion ,  t h e  determinant of t h e  ( 2  x 2) T 
ca lcu la ted  from t h e  r e l a t ion :  

a r ray  can be d i r e c t l y  21 

3 R ,  3L 
2 R  ,2L 

( 8-4 I 

Once the  f i n a l  ( 2  x 2)  matrix ( T  ) 

is  evaluated much i n  the  same manner as suggested by P e s t e l  and Leckie 

(Reference 7) .  Namely, various values f o r  w are subs t i t u t ed  u n t i l  t h e  cross- 

over po in ts  (poin ts  where t h e  function's magnitude equals zero) are obtained. 

The main difference between t h e  one used and Pes te l  and Leckies' was t h a t  a 

frequency response of t he  function was obtained. This w a s  done because of t h e  

ease of computation through ava i lab le  programs. The r e s u l t  i s  shown i n  Figure 

8-1. 
quency points.  

a r e s u l t  of t h e  re la t ionship  between zero magnitude points  of the  function and 

i t s  frequency response p l o t  (dB). O f  course, w i t h  an ac tua l  t r c n s f e r  f'unction, 

resonance poin ts  o r  peaks i n  t he  p l o t  at t h e  na tu ra l  frequencies would normally 

be expected. Table 8-1 l is ts  t h e  na tura l  frequencies o b t d n e d  from a MykLestad 

run using 30 s t a t i o n s  and t h e  wave-transmission method. 

is  formed, t h e  associated determinate 2 1  3 R , 1 L  

Here, the  troughs o r  "anti-resonance" poin ts  i nd ica t e  t h e  natural, fre- 

This i s  cor rec t  because one would expect such response as 

Tab le  8-1. 

TABLE OF NATURAL FREC)UENCIES 

Myklestad Difference 
Method Transmission Between t h e  Two 

Mode 30 Sta t ions  ( cps )  Matrix Method (cps) Ne thods 

1 0.2165 0.2165 0 

2 0.593 

3 1 . 266 

0.589 

1.273 

-0.004 

+o . 007 

4 2.029 2,037 +0.008 

5 2 . 967 2 . 976 +0 . 009 

35 



0 cv 0 CD 0 0 0 
I 

0 
N N 22 =r, z 0 CD " 

(9P) I IZ1 I 

36 



I .  

It  is  apparent t h a t  both methods r e su l t  i n  f a i r l y  accurate  data, with t h e  wave- 

transmission method being computationally s l i g h t l y  faster, and somewhat more 

accurate. Therefore, t h e  wave-transmission method has a s l i g h t  advantage over 

t h e  Myklestad method. 

The physical  parameters f o r  t he  three ,  t h i n ,  uniform beam segments used i n  

t h i s  spec i f i c  case are l i s t e d  i n  Table 8-2. 

Table 8-2 

PHYSICAL BEAM PARAMETERS" 

Parameter Beam 1 Beam 2 T3em 3 Dimensions 

R 500 500 500 i n  . 
A 3.1416 6.2832 12 . 5664 in.  

I 0 . 7851: 3.lh16 12.5664 i n  . 
Lb/in. 125.664~10 

2 in.  /sec a 0 995x10 1 . 4 1 2 ~ 1 0 ~  1.935~10 

3 

1L  

2 6 
5 

6 31. h16~10 6 
5 

E1 7.8 54x10 

w t  0.3063 0 . 6126 1.2252 lb / in .  

* Material: aluminum 

Furthermore, t h e  lowest na tu ra l  frequency could be obtained approximately from 

t h e  modified cascading method of Section 7.2 With use of t h e  above parameters, 

If end e f f e c t s  are disregarded, t he  approximating equations previously developed 

are similar t o  those of a uniform beam. 
of t h e  approximating system must be t h e  same as f o r  a uniform beam with same 

For  a uniform beam, t h e  per iod of t h e  lowest na tu ra l  v ibra t ion  i s  given 

Therefore, t h e  na tura l  frequencies 

'to 
by: 
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For t h e  composite beam with Tt = 8.15, T1 = 4.58, and i ts  rec iproca l  or f irst  

bending mode becomes: 

, 

fl - - - 1 = 0.218 cps 

T1 

Hence, f o r  estimates of t h e  lowest bending mode t h i s  estimation procedure 

appears a t t r a c t i v e l y  simple. 

8.2 TRANSIENT RESPONSE 

The main obstacle  i n  using t h e  d i s t r ibu ted  parameter approach t o  analyze t h e  

t ransverse bending dynamics of a s t ruc tu re  is  i n  obtaining time response 

solut ions.  The problem is twofold, and e x i s t s  as a r e s u l t  of t h e  computers 

and t h e  computer techniques cur ren t ly  avai lable .  F i r s t ,  t h e  terms involved 

i n  most t r ans fe r  functions a re  nonanalytical ,  r e s u l t i n g  i n  s tandard t i m e  

response methods being inadequate. 

as adding damping t o  t h e  system, but are approximate a t  best. 

hyperbolic functions involved and the  lack of enough s i g n i f i c a n t  d i g i t s  i n  

computer programs of ten  cause erroneous r e s u l t s .  

d i f ferences of  very la rge  numbers being s o  s m a l l  i n  t h e  t r a n s f e r  m c t i o n  

t h a t  t he  computer assumes them t o  be zero (Reference 7 )  . 
be seen t o  occur as t h e  frequency increases  and is first evident at the  

second o r  t h i r d  na tura l  frequency. Furthermore, t h i s  d i f f i c u l t y  becomes 

compounded as more uniform bean segments are used t o  approximate a non-uniform 

s t ruc ture .  

Some of these methods may be altered, such 

Secondly, the  

This l i m i t a t i o n  occurs i n  

This problem w i l l  

As an example, t h e  t h in ,  uniform beam transmission matrix given i n  Appendix B 

was used with 1% damping added. 

were d i s t r ibu ted  along t h e  imaginary axis. 

displaced them s l i g h t l y  i n t o  t h e  l e f t  ha l f  plane, o f f  t h e  j w - a x i s .  
r e su l t i ng  t r a n s i e n t  (y2 t o  a 9, s t e p )  s t i l l  e x h i b i t s  an o s c i l l a t i o n  at t h e  1 
first bending-mode frequency of 5.1 cps as see i n  Figure 8-2. 

by t h e  f i r s t  mode's dominance over t h e  o ther  modes as seen i n  t h e  t r a n s f e r  

The bending poles  of t h e  system o r i g i n a l l y  
The addi t ion  of t h e  1% damping 

The 

This i S  caused 
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func t ion ' s  frequency response (Figure 8-3). 
breakdown occurring a t  t h e  t h i r d  and higher  bending modes. 
meters i n  t h i s  case a r e  1 = 200 in., A = 1 in .  , E = 30x10 

Also observed i s  the  funct ion '  s 

The beam para- 

l b / in .  , 2 6 2 

p = 0 . 7 2 5 ~ 1 0 - ~  lb-sec2/in. 4 , I = 0.0796 i n .  4 , and a = 57.5~10 3 2  in .  /sec and 

the  f i v e  bending-mode frequencies i n  radians per  second are first, 32; second, 
89; t h i r d ,  174; fourth, 288; and fifth, 433. 

Also, t he  time response ctf a cascade of three dimiimilar, thin,  uniform beams 

whose parameters a r e  l i s t e d  i n  Section 8.1 was obtained and presented i n  

Figure 8-4. 
a u d t  s tep applied at the smll end (x = 1,500 in . )  i s  obtained through a 

mode summa t i o n  technique. 

Here the  l inear ve loc i ty  a t  s t a t i o n s  along the  beam's length f o r  

This check case ind ica t e s  t h a t  the  disturbance propagates instantaneously 

down the  beam. But, obviously, the resul ts  obtained from the  transmission 

technique would not  agree because a deley occur:: i n  the  c h a r a c t e r i s t i c  va r i -  

able':: path (see Figure 4-1). 

8 . 3 FOR4AC ( FORMULA MANIPULATION COMPILER) PROGRAM 

FORMAC provides a capabi l i ty  for  formal manipulation of mathematical expressions 

as w e l l  as ana ly t i ca l  d i f f e ren t i a t ion .  Operations may be performed on equations 

or ,  i n  t h i s  case, matrixes, which are  combinations i n  numeric and symbolic form, 

However, i f  numerical values a re  required,  t h e  Fortran I V  capab i l i t y  i s  ava i l -  

able as  a subset. 

ava i lab le  i n  References 15, 16, 17, and 18. 

Detailed information and example programs on FORMAC are 

The advantages associated wi th  such a system a r e  obvious. 

one is the  t i m e  savings. 

multiplying t h e  transmission matrixes manually and, w i t h  t h e  addi t ion  of sec- 

ond-order e f f ec t s  (shear  compliance and ro t a ry  i n e r t i a ) ,  t h e  time spent per- 

forming these  tedious operations would g rea t ly  increase.  

is the  reduced l ikel ihood of e r ror .  

computatiocs, more time is avai lab le  f o r  c r ea t ive  work. 

The most important 

Without FORMAC, much t i m e  would be spent symbolically 

The o ther  advantwe 

Therefore, by automating t h e  a lgebra ic  
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! *  
I .  Because FORMAC is a new system, it has ce r t a in  disadvantages. F i r s t ,  t h e  

documentation is  samewhat incomplete. A b e t t e r  user ' s  manual is  needed. The 

lag i n  documentation is understandable , considering the  many var ia t ions  and 

uses of t h i s  symbolic system. 

Second, because FORMAC is s t i l l  an experimental IBM program, e r rors  which t h e  

engineer m a y  make in  using it become f a r i l y  d i f f i c u l t  t o  locate .  

Troubleshooting must be done e i t h e r  by the  engineer or  by t h e  IBM representa- 

t i v e .  Furthermore, running a FORMAC program on the  I B M  7094 computer is more 

d i f f i c u l t  because o f  t h e  spec ia l  I B M  tapes required.  However, the FORMAC 
program has been used w i t h  some success i n  t h i s  study. 
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Section 9 

CONCLUSIONS 

I .  

The authent ic i ty  of t h e  general  transmission matrix presented i n  Section 4 
and the  spec i f i c  transmission matrixes of  Appendixes A and B was established 

by a series of tests. 

by use o f  the following methods: 

e n t i a l  equation, and ( 2 )  the  exponential representat ion obtained from t h e  

canonical form of the  state vector  equation. By neglect of t h e  shear com- 

pl iance,  ro t a ry  i n e r t i a ,  and axial and lateral  loads,  t h e  transmission 

matrixes as w e l l  as Eigenvalues s i m p l i e  w i t h  s l i g h t  manipulation t o  those 

f o r  a t h i n ,  uniform beam (Reference 10). 

vector  and assuming harmonic motion, t h e  transmission matrix converts t o  t h e  

form of  Reference 11. 

F i r s t ,  t he  general transmission matrix was obtained 

(1) t he  so lu t ion  of a fourth-order differ- 

Furthermore, changing the s t a t e  

The combination of transmission matrixes w a s  checked by considering a cascade 

of three iden t i ca l  beams of length 9.. The product of t h e  three  transmission 

matrixes reduced t o  a transmission matrix fo r  a uniform beam of Length 39.. 
An add i t iona l  check and accuracy test  of  the transmission matrix formed and 

transmission technique w a s  demonstrated by comparison of the na tura l  frequen- 

c i e s  f o r  t h e  cascaded beam. 

be faster i n  computer t i m e  and eas ie r  t o  code than  t h e  modal method. 

I n  t h i s  case,  t h e  transmission method proved t o  

The transmission method has a d i s t i n c t  advantage over t he  standard modal 

approach f o r  incorporating s loshing masses. 

approach, t h e  s loshing masses are included d i r ec t ly  i n t o  t h e  bending equa- 

t i o n  w i t h  use of a simple matrix mult ipl icat ion.  

n a t u r a l  frequencies and modal masses are determined without t h e  s loshing 

masses. 

fer M e t i o n  form, t h e  s loshing masses are included. 

s losh ing  mass is a summation of t h e  mode def lect ions and cannot be as 

accura te  as the deflect ion used i n  t h e  transmission approach. 

I n  t h e  transmission matrix 

I n  t h e  modal approach, t h e  

Later, when the equations are i n  generalized coordinates o r  trans- 

The def lec t ion  at t h e  
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The wave-transmission technique could be very useful- i n  studying t h e  respIn:-rl 

of structru'es subjected t o  loads $hat ore suddenly applied (for examplc, t,hc 

study of separation shocks and t h e i r  effect on the local. s t ruc tu re ) .  
problems i n  which t h e  s t ruc tu re  can be represerpted by a uniforn; element anG 
t h e  propagating time is  of prime importance, t h i s  method has  a dis t inc t ,  R h r c n -  

tage because it can provide information which i s  unobtainable with attiel- 

For 

Nie thod s 

The wave-transmission technique's pr inc ipa l  d i f f i c u l t y  l ies  i n  t h e  f r a c t i o n a l  

powers of s and general  complexity of matrix forms And re su l t i ng  t r a n s f e r  

flmctions. 

come t h i s ,  but  s impl i f ica t ion  of forms w a s  s t i l l  Left t o  t h e  engineer. 

Furthermore, complexity of t h e  terms increases as a function of the  non- 

uniformity of the  s t ruc ture .  

s t ruc tures .  Direct appl icat ion t o  t h e  analysis  of (J. complete launch vehicle  

would require  e i the r  gross simplifying assumptions o r  development of a d ig i -  

t a l  computer program. Because time so lu t ions  were not a goal of t h i s  study, 

no major e f f o r t  was expended t o  develop such a program. The matrix opera- 
t i ons  would l e n d  themselves very w e l l  t o  d i g i t a l  computations but no cur ren t  

technique is avai lable  f o r  performing t h e  inverse Laplace transformation of 

the  long algebraic expressions having f r ac t iona l  powers of S. It is recom- 

mended tha t  a program w i t h  these c a p a b i l i t i e s  be wri t ten.  Once t h i s  is 

accomplished, t h e  wave-transmission technique should prove i t s e l f  a valuable 

analysis  technique. 

The FORMAC program w a s  used w i t h  some degree of  success t o  over- 

The technique at present  works best on simple 

, 

. 
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I .  

Appendix A 

SPECIFIC BEAM C A W S  

Appendix A is  divided i n t o  five sect ions:  

1. Section A.1 -- Presents the  micro-element model used i n  t h e  sub- 

sequent sections.  

2. Section A.2 -- Presents t h e  spec i f i c  case of a free-free beam w i t h  

secondary dynamic e f f ec t s .  Also, it presents  a more 

thorough treatment of the  transmission matrix t o  

serve as an example f o r  the  cases i n  Sections A . 3  
through A.5. 

3. Section A.3 -- Presents the  equations of  i n t e r e s t ,  defines t h e  general  

terms of the  transmission matrix,  the system matrix,  

t he  Eigenvector matrix,  and l is ts  the spec i f i c  Eigen- 

values f o r  the free-free beam wi th  secondary dynamic 

e f f e c t s  plus a constant axial. force being applied. 

4. Section A.4 -- Presents the  same as Section A . 3  but takes i n t o  con- 
s idera t ion  t h e  longi tudinal  displacement's e f f e c t  

caused by t h e  axial force upon t h e  t ransverse bending. 

5. Section A.5 - Presents the same as Section A.3, but f o r  a d i s t r i -  

buted constant lateral force being applied and the  

a x i a l  force being zero. Also, t h e  addi t ional  develop- 

ment techniques required f o r  augmenting the t rans-  

mission matrix are presented. 
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A . l  GENERAL MODEL AND RELATIONS 

- 

T 
1 

Y 

Figure A-1 represents  the micro-element model of  t he  beam w i t h  lateral  
inertia, rotary inertia, and la teral  def lect ions caused by bending and 

shearing s t r a in .  

ing longi tudinal  displacement and is under d i s t r ibu ted ,  constant,  

lateral  loading. 

s u i t  t h e  cases considered. 

This model is  under constant a x i a l  force wi th  r e su l t -  

I n  the  following sec t ions ,  t h i s  model w i l l  a l t e r ed  t o  

Y 
~ 

-8 + 6'6, - (dx-dl) 
a x  

dM M +- (dx-dl) 

PARALLEL 
TI) X-AXIS 

TOTAL Q 

Figure A-1. Microelement Model o f  Beam 

Here t h e  shear force,  Q,  i s  assumed t o  remain p a r a l l e l  t o  the  y-axis 

and ro t a t e s  the  segment's cen te r l ine  through an angle ayB/ax w h i l e  t h e  

bending moment, M,  adds an additional. c e n t e r l i n e  and vertical face 



4 

ro ta t ion  of angle 8. 

t o  t he  x-axis and the  constant d i s t r ibu ted  lateral  force,  w, p a r a l l e l  t o  

t h e  y-axis. 

The axial force,  P, is  assumed t o  remain p a r a l l e l  

A.2 TRAHSVERSE BENDING OF A FREEbFACE BEAM WITH SECONDARY DYNAMIC EFFECTS 

Consider t h e  micro-element i n  Figure A l l  with t h e  e f f e c t s  of lateral 

i n e r t i a ,  ro ta ry  i n e r t i a ,  lateral def lect ions caused by bending s t r a i n ,  

and lateral  def lect ions caused by shearing s t r a i n  (P = 0, w = 0, dR = 0 ,  .. 
x = 0). 

The associated four describing equations are: 

Defining : 

de = (M/EI) o r  - = [m] 
dx dx 

dM 2 a2e dm p A r 2  a20 - =  ( p A r  7 - Q) o r  - =  E--- ql dx dx E1 at2 a t  

2 2 2  
1 zI (-pAr s R 

E1 T 

(A-3) 
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The spec i f ic  system matrix becomes: 

0 1 o (-EI/GA ) 

dx 0 0 ( pAr2s2/EI)  0 1 0 -1 0 '1 E} (A-6) 

( -ADS /EI ) 0 0 0 

o r  noting t h a t :  

r e s u l t s  in :  

By manipulating the  four equations 

spec i f i c  fourth-order d i f f e r e n t i a l  

i n  t h e  matrix r e l a t ion  above t h e  

equation i n  y evolves as: 

4 
mere fo re ,  $ = ( (J+T)  and $ = ( B  - U T ) ,  and t h e  Eigenvalues are:  

( A-10 ) 



e 
and the specific transmission matrix with: 

. 

K1 = 1 

becomes : 

( A-lla) 

( A-llb ) 

( A-llc ) 

(A-lld) 

( A-1le ) 

( A-llf 

( A-llh) 

5 1  



where : 

2 
a : X 1 )  

" = ( 2  2 
+ x2 

A2 

2 x2 - a 
= ( 2  2 1 

x1 + l2 

(A-13a) 

( A-13b) 

(A-13~ 

A.3 TRANSVERSE BENDING OF A FREE-FACE BEAM WITH SECONDARY DYNAMIC EFFECTS 
SUBJECTED TO AN AXIAL FORCE,P 

I n  t h i s  case, w = 0 and dP, = 0 when r e f e r r i n g  t o  Figure A-1. 

approaches t o  w r i t i n g  the  equilibrium equations of the beam segment 

model could now be applied.  

s imi l a r ly  t o  t h a t  of a catenary cord of uniform weight suspended f r ee ly  

between two points. 

Two 

'Ihe f i r s t  approach would treat th.? beam 

As a r e s u l t  of equilibrium considerations,  an 

ax ia l  cen ter l ine  force would e x i s t  g rea t e r  than  t h e  force P. 

would be the axial center l ine  force 's  component i n  t h e  x-direction and 
there a l so  would e x i s t  a component i n  t h e  y-direction. Therefore, t h e  

Here P 

ax ia l  force would contr ibute  t o  t h e  shear  on t h e  sement throuRh t h e  

equilibrium equations. I n  t h i s  case,  t h e  bas ic  shear  r e l a t i o n ,  

Q = GA 

tage of complicating the  equations of equilibrium f o r  t h e  se-ent. 

ay /ax would remain as wri t ten.  This approach has the  disadvan- s s  

The o ther  approach considers t h e  P force p a r a l l e l  t o  t h e  x-axis only when 

wr i t ing  t h e  equation of motion and incorporates  the  P force 's  shear in- 

fluence by modie ing  t h e  shear  r e l a t i o n  equation: 

Because t h i s  approach is more convenient than t h e  first approach and 

(Q, + PO) = GAS aY,/ax. 

because both methods r e s u l t  i n  i d e n t i c a l  so lu t ion ,  t h i s  is t h e  approach 
u t i  1 i zed . . 



The four describing equations i n  t h i s  case when w r i t t e n  i n  matrix form 

are : 

2 4  
0 (1- P/Ms)  0 (-on / 6  

0 0 1 0 
3 

T PL 
0 ( -  - -P- -1 0 R2 GAS -1 

B4 / R4 0 0 0 

The re su l t an t  forth-order d i f f e r e n t i a l  equation i n  y becomes: 

( A - 1 4 )  11 
Therefore, t he  general  terms for  the spec i f i c  Eigenvalues become: 

P ( P+GAs ) 2 O+T 

Q = a. (T+ EIGAs a. 

And from t h e  system matrix, the  general  terms become: 

- P2 K3 - (2 -P- -) CAS 

(A-18a) 

(A-18b) 

(A-18c ) 

( A-i8d) 

(A-18e) 
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3 

, 
J 

The above terms may now be subs t i t u t ed  i n  t h e  general  transmission, 

Eignvector, end-effect, and c h a r a c t e r i s t i c  matrixes t o  obtain t h e  
s p e c i f i c  matrixes for  t h i s  case. 

A . 4  TRANSVERSE BENDING OF A FREE-FREE BEAM WITH SECONDARY DYNAMIC E F F E C T S  
SUBJECTED TO AN AXIAL FORCE,P ,AND CONSIDERING THE RESULTANT LONGI- 
TUDINAL DISPLACEMENT. 

Referring t o  Figure A-1, only w = 0 and t h e  same assumptions and 

def in i t i ons  as i n  Sect ion A.3 apply i n  t h i s  case. Since the  com- 

press ive  influence of t h e  axial force is  considered, t h i s  case is a 

more accurate or  cor rec t  model than t h a t  presented i n  Section A.3. 

From t h e  equilibrium and angle r e l a t i o n  equations,  t h e  system matrix 
formed is  

d 
dx 
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-Y 

0 

m 

9 0 0 0 

- ,  

-Y 

0 

m 

9 . .  



The dll/dx which would otherwise appear i n  the above matrix equation has 

been replaced by (-1. 
react ion force exerted back by the material. being similar t o  t h a t  of a 

res tor ing  spring force,  

P/A 
E This expression w a s  obtained by considering the 

(A-20) dll P = F A -  dx 

That is ,  proportional t o  t h e  cross-sectional area A and inversely pro- 

port ional  t o  t h e  length dx.  

i n  considering the  longi tudinal  wave-transmission case. 

This i s  the same as the  r e s u l t s  one obtains 

The r e su l t an t  fourth-order d i f f e ren t i a l  equation i n  t h i s  case becomes: 

The terms f o r  the Eigenvalues now become : 

PEA (P+GAs) 
I a2 U+T 

E1 GAS ( EA-P ) 

P + GAS 
JI = [ -UT + B4 ( 11 

(A-22 ) 

(A-23) 

and *om t he  system matrix, the K . ' s  are found t o  be f o r  the  transmis- 

s ion,  end-effect, Eigenvector, and cha rac t e r i s t i c  matrixes: 
1 

= (1 - P/GAJ KL (A-24a) 

(A-24b) 
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2 -A2 2 + u 

K7 = 5 
6 

A.5 TRANSVERSE BENDING OF A FREE-FREE BEAM WITH SECONDARY DYNAMIC EFFECTS 
SUBJECTED TO A DISTRIBUTED CONSTATTT LATEXAL LOAD 

I n  t h i s  case P,  2, and dll are zero; w ,  t h e  external loading per  un i t  
length,  is assumed invar ian t  i n  t i m e  and length. 

d i f f e r e n t i a l  equations become: 

The four descr ibing 

de - = M/EI dx 

dM 2 2  - =  ( p A r  s 0 - Q) 
dx 

bding t h e  r e l a t ions  of Equations A-7 and A-25, t h e  fourth-order d i f f e r -  
e n t i a l  equation i n  y becomes: 

( A-26 I 



.. 

The Eigenvalues and associated Eigenvectors are iden t i ca l  t o  those f o r  

t h e  model i n  Section A.2. 

r e l a t e d  as: 

The system matrix and disturbance matrix are 

-Y 

a 
dx 

m 

0 1 0 

0 0 1 

0 2 
0 -T/k 

B4/E4 0 0 

or i n  canonical matrix form: 

-Y 

e 

-1 ill 

0 Q 

Y = [AY + w] d 
dx 
- 

+ 

0 

0 

0 

w /EI 

(A-27 

(A-28) 

Because all t he  elements of the A-matrix are constant ,  t h e  so lu t ion  of 

Equation A-28 is:  

-Au - ~ ( x )  = {eAX yo + e 4 e w ( u ) d u )  
0 

(A-29 

where : 

Yo is t h e  i n i t i a l  state vector at the  point x = 0. 

eAx is  t h e  transmission matrix T as defined i n  Section A.2. 

-Aa e is T-’(o) with u a dummy integrat ion var iable .  

T-’(u) i n  t h i s  case is  T-l(x) and is found through t h e  r e l a t ion  

T-’(x) = T( -x) ; t h i s  property holds whenever t h e  A-matrix is independent 

of t h e  space coordinate. Therefore, Equation A-29 may be wr i t ten  as : 

X 

Y(x) = {T(x) Yo + T(x) I T(-a)w(o)dul 
0 

(A-30 
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The integration in Equation A-30 results in the (4x1) matrix: 

3 wll Ay 3 
(A-3) 

Finally, after performing the premultiplication of the above column 
matrix by the transmission matrix T(x), the augmented, final transmis- 
sion matrix has the form: 

(A-32 

where D(x) is the (4x1) disturbance array influencing the states of the 
system and whose elements are: 

[(A2ch(l) + AlC(2))(-A2ch(l) - AlC(2) + 1) + 

A2 +(r sh(1) + S(2))(A2hlsh(l) - AlX2S(2))+ 
1 2 

2 (3,l) = WE A[-y2(ch(l) + C(2))(A1 + A2) + y2 + y3(X1A1sh(l) 

(A-33a) 

( A - 3 3 )  



APPENDIX B 

TRANSMISSION AND PROPAGATION MATRIXES FOR THE T H I N ,  UNIFORM BEAM 

Appendix B contains the specif ic  matrixes for  the  th in ,  uniform beam (sometimes 

referred t o  as the  Bernoul l i -Ner  beam). 

Reference 10. 

For additional information, see 

The transmission matrix for  a uniform beam is given as: 

where : 

a = cos 6 cosh 6 

B = ( s i n  6 cosh 6 + cos 6 sinh 

y = s in  6 sinh 6 
6 = ( s in  & cosh & - cos sinh 

(B-2a) 

(B-2b 1 

( B-2c ) 

(B-2d) 

t 

R2 T =  - 
2a 

And the two propagation matrixes Prl and Pr2 are: 

(B-2f) 
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